1,332,367 research outputs found

    Electric-Field Guided Precision Manipulation of Catalytic Nanomotors for Cargo Delivery and Powering Nanoelectromechanical Devices

    Full text link
    We report a controllable and precision approach in manipulating catalytic nanomotors by strategically applied electric (E-) fields in three dimensions (3-D). With the high controllability, the catalytic nanomotors have demonstrated new versa-tility in capturing, delivering, and releasing of cargos to designated locations as well as in-situ integration with nanome-chanical devices (NEMS) to chemically power the actuation. With combined AC and DC E-fields, catalytic nanomotors can be accurately aligned by the AC E-fields and instantly change their speeds by the DC E-fields. Within the 3-D orthog-onal microelectrode sets, the in-plane transport of catalytic nanomotors can be swiftly turned on and off, and these cata-lytic nanomotors can also move in the vertical direction. The interplaying nanoforces that govern the propulsion and alignment are investigated. The modeling of catalytic nanomotors proposed in previous works has been confirmed quan-titatively here. Finally, the prowess of the precision manipulation of catalytic nanomotors by E-fields is demonstrated in two applications: the capture, transport, and release of cargos to pre-patterned microdocks, and the assembly of catalytic nanomotors on NEMS to power the continuous rotation. The innovative concepts and approaches reported in this work could further advance ideal applications of catalytic nanomotors, e.g. for assembling and powering nanomachines, nano-robots, and complex NEMS devices

    Effects of a static electric field on two-color photoassociation between different atoms

    Full text link
    We study non-perturbative effects of a static electric field on two-color photoassociation of different atoms. A static electric field induces anisotropy in scattering between two different atoms and hybridizes field-free rotational states of heteronuclear dimers or polar molecules. In a previous paper [D. Chakraborty et.\it {et.} al.\it {al.}, J. Phys. B 44, 095201 (2011)], the effects of a static electric field on one-color photoassociation between different atoms has been described through field-modified ground-state scattering states, neglecting electric field effects on heteronuclear diatomic bound states. To study the effects of a static electric field on heteronuclear bound states, and the resulting influence on Raman-type two-color photoassociation between different atoms in the presence of a static electric field, we develop a non-perturbative numerical method to calculate static electric field-dressed heteronuclear bound states. We show that the static electric field induced scattering anisotropy as well as hybridization of rotational states strongly influence two-color photoassociation spectra, leading to significant enhancement in PA rate and large shift. In particular, for static electric field strengths of a few hundred kV/cm, two-color PA rate involving high-lying bound states in electronic ground-state increases by several orders of magnitude even in the weak photoassociative coupling regime

    Role of the radiation-reaction electric field in the optical response of two-dimensional crystals

    Full text link
    A classical theory of a radiating two-dimensional crystal is proposed and an expression for the radiative-reaction electric field is derived. This field plays an essential role in connecting the microscopic electromagnetic fields acting on each dipole of the crystal to the macroscopic one, via the boundary conditions for the system. The expression of the radiative-reaction electric field coincides with the macroscopic electric field radiating from the crystal and, summed to the incident electric field, generates the total macroscopic electric field.Comment: Two-dimensional crystal, metasurface, local field, radiative-reaction, Fresnel, boundary conditio
    • …
    corecore